Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12.
نویسندگان
چکیده
The aim of this study was to identify the compatible solutes accumulated by Pseudomonas putida S12 subjected to osmotic stress. In response to reduced water activity, P. putida S12 accumulated Nalpha-acetylglutaminylglutamine amide (NAGGN) simultaneously with a novel compatible solute identified as mannitol (using 13C- and 1H-nuclear magnetic resonance, liquid chromatography-mass spectroscopy and high-performance liquid chromatography methods) to maximum concentrations of 74 and 258 micromol g (dry weight) of cells(-1), respectively. The intracellular amounts of each solute varied with both the type and amount of osmolyte applied to induce osmotic stress in the medium. Both solutes were synthesized de novo. Addition of betaine to the medium resulted in accumulation of this compound and depletion of both NAGGN and mannitol. Mannitol and NAGGN were accumulated when sucrose instead of salts was used to reduce the medium water activity. Furthermore, both compatible solutes were accumulated when glucose was substituted by other carbon sources. However, the intracellular quantities of mannitol decreased when fructose, succinate, or lactate were applied as a carbon source. Mannitol was also raised to high intracellular concentrations by other salt-stressed Pseudomonas putida strains. This is the first study demonstrating a principal role for the de novo-synthesized polyol mannitol in osmoadaptation of a heterotrophic eubacterium.
منابع مشابه
Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements
Organic solvent-tolerant bacteria are outstanding and versatile hosts for the bio-based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent-tolerant Pseudomonas putida S12 contains many such mobile elements th...
متن کاملGenome sequence of Pseudomonas putida S12, a potential platform strain for industrial production of valuable chemicals.
Pseudomonas putida strain S12, a well-studied solvent-tolerant bacterium, is considered a platform strain for the production of many chemicals. Here, we present a 6.28-Mb assembly of its genome sequence. We have annotated 32 coding sequences (CDSs) encoding efflux systems of organic compounds and 195 CDSs responsible for the metabolism of aromatic compounds.
متن کاملEstablishment of oxidative D-xylose metabolism in Pseudomonas putida S12.
The oxidative D-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on D-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g D-xylose(-1)) and a maximum growth rate of 0.21 h(-1). Remarkably, most of the genes...
متن کاملMicrofluidic Extraction of Rna from Blood
We demonstrate a novel assay for purification of RNA (16S rRNA) from whole human blood infected with Pseudomonas Putida (P. Putida). This assay is unique in that the extraction chemistry provides a method which both lyses bacteria cells and protects RNA from degradation when isolating from matrices rich with ribonuclease (RNase) (such as blood). The method can also be integrated with on-chip RN...
متن کاملDynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI
Pseudomonas putida S12 is exceptionally tolerant to various organic solvents. To obtain further insight into this bacterium's primary defence mechanisms towards these potentially harmful substances, we studied its genome wide transcriptional response to sudden addition of toluene. Global gene expression profiles were monitored for 30 minutes after toluene addition. During toluene exposure, high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 23 شماره
صفحات -
تاریخ انتشار 1996